UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level and Advanced Level

CENTRE NUMBER

CANDIDATE NUMBER

CHEMISTRY

Advanced Practical Skills 1
May/June 2013

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 12 and 13.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages and 4 blank pages.

BLANK PAGE

1 The reaction between sulfuric acid and sodium hydroxide is exothermic.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

By measuring the temperature changes that occur when different volumes of the acid are added to a fixed volume of the alkali, it is possible to determine the neutralisation point. This is the point at which just enough acid has been added to react with all the alkali present. The aim of the investigation is to determine the concentration of the sulfuric acid.

FA 1 is 2.00 mol dm $^{-3}$ sodium hydroxide, NaOH .
FA 2 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Read through the instructions carefully and prepare a table for your results before

 starting any practical work.(a) Method

- Support a plastic cup in a $250 \mathrm{~cm}^{3}$ beaker.
- Use a pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into the plastic cup.
- Record the temperature of FA 1, T_{1}, in the space below.

$$
T_{1}=\ldots \ldots \ldots \ldots .{ }^{\circ} \mathrm{C}
$$

- Fill the burette labelled FA 2 with FA 2.
- Add $5.00 \mathrm{~cm}^{3}$ of FA 2 from the burette to the plastic cup.
- Stir the mixture thoroughly and record the temperature of the solution.
- Add a further $5.00 \mathrm{~cm}^{3}$ of FA 2 to the plastic cup and again record the temperature.
- Repeat the addition of $5.00 \mathrm{~cm}^{3}$ portions of FA 2 until you have added a total of $50.00 \mathrm{~cm}^{3}$ of FA 2 to the plastic cup. Measure the temperature after each addition.
- Record in your table below the total volume of FA 2 added and the temperature of the solution after each addition.
(b) After each addition of acid, the temperature rise, ΔT, is given by,
$\Delta T=$ temperature recorded $-T_{1}$.

The total volume of solution in the plastic cup, V_{T} is given by,
$V_{T}=$ volume of FA $2+$ volume of FA 1.

The heat given out by the reaction is proportional to the temperature rise, ΔT, multiplied by the total volume of solution in the plastic cup, V_{T}.

Use your experimental results to complete the following table.
You should include:

- the volume of FA 2
- the total volume in the plastic cup, V_{T}
- the temperature of the solution
- the temperature rise, ΔT
- the total volume \times the temperature rise, $\left(V_{T} \times \Delta T\right)$

(c) (i) On the grid below, plot the values of $\left(V_{T} \times \Delta T\right)$ on the y-axis against the volume of FA 2 on the x-axis.

(ii) Draw a straight line of best fit through the points where the values of $\left(V_{T} \times \Delta T\right)$ are increasing. Draw a second straight line of best fit through the points where the values of $\left(V_{T} \times \Delta T\right)$ are decreasing.
(iii) From your graph, determine the volume of FA 2 where the two lines of best fit intersect.

$$
\text { volume of FA } 2=\text {... cm }{ }^{3}
$$

(d) The value you recorded in (c)(iii) is the volume of FA 2 which is needed to neutralise $25.0 \mathrm{~cm}^{3}$ of FA 1. In the following calculations you will determine the concentration of FA 2.

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate how many moles of sodium hydroxide are contained in $25.0 \mathrm{~cm}^{3}$ of FA 1 .

$$
\text { moles of } \mathrm{NaOH}=
$$

\qquad mol
(ii) Calculate how many moles of sulfuric acid would react with the number of moles of NaOH in (i).
(iii) Calculate the concentration of FA 2.

$$
\text { concentration of FA } 2=
$$

\qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(e) Other than heat losses from the plastic cup to the surroundings, suggest an additional source of error in this experiment and how this error could be reduced.
\qquad
\qquad
\qquad

2 A second way to determine the concentration of an acid is by volumetric titration. In this experiment you will first dilute the sample of FA 2 that you used in Question 1 and then titrate this diluted solution using aqueous sodium hydroxide.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 2 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FA 3 is $0.150 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
distilled water
(a) Method

Dilution of FA 2

- Use the burette labelled FA 2 to transfer $25.00 \mathrm{~cm}^{3}$ of FA 2 into the $250 \mathrm{~cm}^{3}$ graduated (volumetric) flask, labelled FA 4.
- Make up the contents of the flask to the $250 \mathrm{~cm}^{3}$ mark with distilled water.
- Stopper the flask and mix the contents thoroughly. This is solution FA 4.

Titration

- Fill the burette labelled FA 3 with FA 3.
- Use a clean pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 4 into a conical flask.
- Add to the flask a few drops of the acid-base indicator provided.
- Titrate the acid in the flask with the alkali, FA 3.

You should perform a rough titration.
In the space below record your burette readings for this rough titration.

The rough titre is cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record, in a suitable form below, all of your burette readings and the volume of FA 3 added in each accurate titration. Make certain that any recorded results show the precision of your practical work.

For
Examiner's Use
(b) From your titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.
\qquad cm^{3} of FA 3.
(c) (i) Calculate how many moles of NaOH are contained in the volume recorded in (b).
moles of $\mathrm{NaOH}=$ \qquad mol
(ii) Hence, calculate how many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are contained in $25.0 \mathrm{~cm}^{3}$ of FA 4 .
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ \qquad mol
(iii) Calculate the concentration of the sulfuric acid, FA 2.
concentration of FA $2=$ \qquad moldm^{-3}
(d) You have used two methods to determine the concentration of the sulfuric acid in FA 2. Use your answers to 1(d)(iii) and 2(c)(iii) to calculate the difference in these values as a percentage of the value found by the volumetric titration method.

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the

 element or compound must be given.(a) FA 5, FA 6, FA 7 and FA 8 are aqueous solutions each of which contains a single cation and a single anion. Some of the ions present are listed below.
Pb^{2+}
Cl^{-}
$\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{CrO}_{4}{ }^{2-}$

By observing the reactions that occur when pairs of the solutions are mixed together, you will be able to identify which solution contains which of these ions.

Use a 1 cm depth of each solution in a test-tube and record your observations in the following table.

	FA 6	FA 7	FA 8
FA 5			

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

[8]
(b) From your observations deduce which solution contains each of the following ions.

ion	Pb^{2+}	Cl^{-}	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{CrO}_{4}{ }^{2-}$
solution				

(c) Identify another ion that is present in one of the solutions. Explain your reasoning. ion \qquad
explanation \qquad
\qquad
(d) (i) If chloride ions, Cl^{-}, were to be replaced with bromide ions, Br^{-}, in one of the solutions, would it make any difference to the observations you made in (a)? Explain your answer.
\qquad
\qquad
\qquad
(ii) FA 9 is an aqueous solution containing either chloride ions or bromide ions. Select a pair of reagents to identify which anion is present.
reagents
Carry out this test and record your observations and conclusion.
observations \qquad
\qquad
The anion in FA 9 is \qquad
[Total: 15]

Qualitative Analysis Notes

Key: [ppt. $=$ precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
$\begin{aligned} & \text { lead(II), } \\ & \mathrm{Pb}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
$\begin{aligned} & \text { chromate(VI), } \\ & \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq}) \end{aligned}$	yellow solution turns orange with $\mathrm{H}^{+}(\mathrm{aq})$; gives yellow ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$; gives bright yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
chloride, Cl-(aq)	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}-(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ or with $\mathrm{Pb}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

